## Exercise 18

Use power series to solve the differential equation

$$
y^{\prime \prime}-x y^{\prime}-2 y=0
$$

## Solution

$x=0$ is an ordinary point, so the ODE has a power series solution.

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Differentiate the series with respect to $x$.

$$
y^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Differentiate the series with respect to $x$ once more.

$$
y^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
$$

Substitute these formulas into the ODE.

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-x \sum_{n=1}^{\infty} n a_{n} x^{n-1}-2 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Bring $x$ and 2 inside the respective summands.

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0
$$

Because of $n$ in the summand, the second series can start from $n=0$.

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=0}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0
$$

Make the substitution $n=k+2$ in the first series and the substitution $n=k$ in the second and third series.

$$
\sum_{k+2=2}^{\infty}(k+2)(k+1) a_{k+2} x^{(k+2)-2}-\sum_{k=0}^{\infty} k a_{k} x^{k}-\sum_{k=0}^{\infty} 2 a_{k} x^{k}=0
$$

Simplify the first sum.

$$
\sum_{k=0}^{\infty}(k+2)(k+1) a_{k+2} x^{k}-\sum_{k=0}^{\infty} k a_{k} x^{k}-\sum_{k=0}^{\infty} 2 a_{k} x^{k}=0
$$

Now that all the sums start from $k=0$ and have $x^{k}$ in the summand, they can be combined.

$$
\sum_{k=0}^{\infty}\left[(k+2)(k+1) a_{k+2} x^{k}-k a_{k} x^{k}-2 a_{k} x^{k}\right]=0
$$

Simplify the summand.

$$
\sum_{k=0}^{\infty}\left[(k+2)(k+1) a_{k+2}-(k+2) a_{k}\right] x^{k}=0
$$

Since $x^{k}$ isn't zero, the quantity in square brackets must be zero.

$$
(k+2)(k+1) a_{k+2}-(k+2) a_{k}=0
$$

Solve for $a_{k+2}$.

$$
a_{k+2}=\frac{1}{k+1} a_{k}
$$

In order to determine $a_{k}$, plug in values for $k$ and try to find a pattern.

$$
\begin{array}{ll}
k=0: & a_{2}=\frac{1}{0+1} a_{0}=\frac{1}{1} a_{0} \\
k=1: & a_{3}=\frac{1}{1+1} a_{1}=\frac{1}{2} a_{1} \\
k=2: & a_{4}=\frac{1}{2+1} a_{2}=\frac{1}{3}\left(\frac{1}{1} a_{0}\right)=\frac{1 \cdot 1}{3 \cdot 1} a_{0} \\
k=3: & a_{5}=\frac{1}{3+1} a_{3}=\frac{1}{4}\left(\frac{1}{2} a_{1}\right)=\frac{1 \cdot 1}{4 \cdot 2} a_{1} \\
k=4: & a_{6}=\frac{1}{4+1} a_{4}=\frac{1}{5}\left(\frac{1 \cdot 1}{3 \cdot 1} a_{0}\right)=\frac{1 \cdot 1 \cdot 1}{5 \cdot 3 \cdot 1} a_{0} \\
k=5: & a_{7}=\frac{1}{5+1} a_{5}=\frac{1}{6}\left(\frac{1 \cdot 1}{4 \cdot 2} a_{1}\right)=\frac{1 \cdot 1 \cdot 1}{6 \cdot 4 \cdot 2} a_{1}
\end{array}
$$

The general formula for the even subscripts is

$$
a_{2 m}=\frac{1}{(2 m-1)!!} a_{0}=\frac{2^{m-1}(m-1)!}{(2 m-1)!} a_{0}
$$

and the general formula for the odd subscripts is

$$
a_{2 m+1}=\frac{1}{(2 m)!!} a_{1}=\frac{1}{2^{m} m!} a_{1} .
$$

Therefore, the general solution is

$$
\begin{aligned}
y(x) & =\sum_{m=0}^{\infty} a_{m} x^{m} \\
& =a_{0}+\sum_{m=1}^{\infty} a_{2 m} x^{2 m}+\sum_{m=0}^{\infty} a_{2 m+1} x^{2 m+1} \\
& =a_{0}+\sum_{m=1}^{\infty} \frac{2^{m-1}(m-1)!}{(2 m-1)!} a_{0} x^{2 m}+\sum_{m=0}^{\infty} \frac{1}{2^{m} m!} a_{1} x^{2 m+1}
\end{aligned}
$$

where $a_{0}$ and $a_{1}$ are arbitrary constants.

